3D Bioplotter Research Papers

Displaying all papers by H. Dong (5 results)

3D-printed regenerative polycaprolactone/silk fibroin osteogenic and chondrogenic implant for treatment of hip dysplasia

Biochemical and Biophysical Research Communications 2022 Volume 636, Part 1, Pages 96-104

Hip dysplasia is a developmental disorder that resulted in insufficient acetabular coverage. Current surgical treatments are technically demanding, complex, invasive, and often lead to associated complications. Therefore, the development of regenerative implants that fit to the bone and induce osteogenesis and chondrogenesis is in high demand. In this study, an implant was developed in which the osteogenic part was 3D printed using polycaprolactone (PCL), crosslinked with dopamine, and subjected to surface mineralization; while the chondrogenic part was prepared using silk fibroin (SF) and bone morphogenetic protein 2. Physical and chemical characterization of the implant was conducted using energy dispersive spectrometry…

Multi-compartment Organ-on-a-Chip Based on Electrospun Nanofiber Membrane as In Vitro Jaundice Disease Model

Advanced Fiber Materials 2021 Volume 3, Pages 383–393

Organ-on-a-chip (OOC) is now becoming a potential alternative to the classical preclinical animal models, which reconstitutes in vitro the basic function of specific human tissues/organs and dynamically simulates physiological or pathological activities in tissue and organ level. Despite of the much progress achieved so far, there is still an urgent need to explore new biomaterials to construct a reliable and efficient tissue–tissue interface and a general fabrication strategy to expand from single-organ OOC to multi-organ OOC in an easy manner. In this paper, we propose a novel strategy to prepare double-compartment organ-on-a-chip (DC-OOC) using electrospun poly(l-lactic acid)/collagen I (PLLA/Col I)…

Hierarchical patterning via dynamic sacrificial printing of stimuli-responsive hydrogels

Biofabrication 2020 Volume 12, Number 3, Article 035007

Inspired by stimuli-tailored dynamic processes that spatiotemporally create structural and functional diversity in biology, a new hierarchical patterning strategy is proposed to induce the emergence of complex multidimensional structures via dynamic sacrificial printing of stimuli-responsive hydrogels. Using thermally responsive gelatin (Gel) and pH-responsive chitosan (Chit) as proof-of-concept materials, we demonstrate that the initially printed sacrificial material (Gel/Chit-H+ hydrogel with a single gelatin network) can be converted dynamically into non-sacrificial material (Gel/Chit-H+–Citr hydrogel with gelatin and an electrostatic citrate–chitosan dual network) under stimulus cues (citrate ions). Complex hierarchical structures and functions can be created by controlling either the printing patterns of…

3D printed silk-gelatin hydrogel scaffold with different porous structure and cell seeding strategy for cartilage regeneration

Bioactive Materials 2021 Volume 6, Issue 10, Pages 3396-3410

Hydrogel scaffolds are attractive for tissue defect repair and reorganization because of their human tissue-like characteristics. However, most hydrogels offer limited cell growth and tissue formation ability due to their submicron- or nano-sized gel networks, which restrict the supply of oxygen, nutrients and inhibit the proliferation and differentiation of encapsulated cells. In recent years, 3D printed hydrogels have shown great potential to overcome this problem by introducing macro-pores within scaffolds. In this study, we fabricated a macroporous hydrogel scaffold through horseradish peroxidase (HRP)-mediated crosslinking of silk fibroin (SF) and tyramine-substituted gelatin (GT) by extrusion-based low-temperature 3D printing. Through physicochemical characterization,…

Reversible Programing of Soft Matter with Reconfigurable Mechanical Properties

Advanced Functional Materials 2017 Volume 27, Issue 13 Article 1605665

Biology uses various cross-linking mechanisms to tailor material properties, and this is inspiring technological efforts to couple independent cross-linking mechanisms to create hydrogels with complex mechanical properties. Here, it is reported that a hydrogel formed from a single polysaccharide can be triggered to reversibly switch cross-linking mechanisms and switch between elastic and viscoelastic properties. Specifically, the pH-responsive self-assembling aminopolysaccharide chitosan is used. Under acidic conditions, chitosan is polycationic and can be electrostatically cross-linked by sodium dodecyl sulfate (SDS) micelles to confer viscoelastic and self-healing properties. Under basic conditions, chitosan becomes neutral, the electrostatic SDS–chitosan interactions are no longer operative, and…